3.2.37 \(\int \frac {\sec ^2(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx\) [137]

3.2.37.1 Optimal result
3.2.37.2 Mathematica [A] (verified)
3.2.37.3 Rubi [A] (verified)
3.2.37.4 Maple [B] (verified)
3.2.37.5 Fricas [B] (verification not implemented)
3.2.37.6 Sympy [F]
3.2.37.7 Maxima [B] (verification not implemented)
3.2.37.8 Giac [F(-2)]
3.2.37.9 Mupad [F(-1)]

3.2.37.1 Optimal result

Integrand size = 23, antiderivative size = 144 \[ \int \frac {\sec ^2(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=-\frac {3 \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{a^{3/2} d}+\frac {9 \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \cos (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {\tan (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}+\frac {3 \tan (c+d x)}{2 a d \sqrt {a+a \cos (c+d x)}} \]

output
-3*arctanh(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/a^(3/2)/d+9/4*arctan 
h(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/(a+a*cos(d*x+c))^(1/2))/a^(3/2)/d*2^(1/2) 
-1/2*tan(d*x+c)/d/(a+a*cos(d*x+c))^(3/2)+3/2*tan(d*x+c)/a/d/(a+a*cos(d*x+c 
))^(1/2)
 
3.2.37.2 Mathematica [A] (verified)

Time = 0.34 (sec) , antiderivative size = 103, normalized size of antiderivative = 0.72 \[ \int \frac {\sec ^2(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\frac {9 \text {arctanh}\left (\sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos \left (\frac {1}{2} (c+d x)\right )-6 \sqrt {2} \text {arctanh}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos \left (\frac {1}{2} (c+d x)\right )+(3+2 \sec (c+d x)) \tan \left (\frac {1}{2} (c+d x)\right )}{2 a d \sqrt {a (1+\cos (c+d x))}} \]

input
Integrate[Sec[c + d*x]^2/(a + a*Cos[c + d*x])^(3/2),x]
 
output
(9*ArcTanh[Sin[(c + d*x)/2]]*Cos[(c + d*x)/2] - 6*Sqrt[2]*ArcTanh[Sqrt[2]* 
Sin[(c + d*x)/2]]*Cos[(c + d*x)/2] + (3 + 2*Sec[c + d*x])*Tan[(c + d*x)/2] 
)/(2*a*d*Sqrt[a*(1 + Cos[c + d*x])])
 
3.2.37.3 Rubi [A] (verified)

Time = 0.89 (sec) , antiderivative size = 152, normalized size of antiderivative = 1.06, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.565, Rules used = {3042, 3245, 27, 3042, 3463, 25, 3042, 3464, 3042, 3128, 219, 3252, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^2(c+d x)}{(a \cos (c+d x)+a)^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^2 \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2}}dx\)

\(\Big \downarrow \) 3245

\(\displaystyle \frac {\int \frac {3 (2 a-a \cos (c+d x)) \sec ^2(c+d x)}{2 \sqrt {\cos (c+d x) a+a}}dx}{2 a^2}-\frac {\tan (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {3 \int \frac {(2 a-a \cos (c+d x)) \sec ^2(c+d x)}{\sqrt {\cos (c+d x) a+a}}dx}{4 a^2}-\frac {\tan (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 \int \frac {2 a-a \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^2 \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}-\frac {\tan (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3463

\(\displaystyle \frac {3 \left (\frac {\int -\frac {\left (2 a^2-a^2 \cos (c+d x)\right ) \sec (c+d x)}{\sqrt {\cos (c+d x) a+a}}dx}{a}+\frac {2 a \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\right )}{4 a^2}-\frac {\tan (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {3 \left (\frac {2 a \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {\int \frac {\left (2 a^2-a^2 \cos (c+d x)\right ) \sec (c+d x)}{\sqrt {\cos (c+d x) a+a}}dx}{a}\right )}{4 a^2}-\frac {\tan (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 \left (\frac {2 a \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {\int \frac {2 a^2-a^2 \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{a}\right )}{4 a^2}-\frac {\tan (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3464

\(\displaystyle \frac {3 \left (\frac {2 a \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {2 a \int \sqrt {\cos (c+d x) a+a} \sec (c+d x)dx-3 a^2 \int \frac {1}{\sqrt {\cos (c+d x) a+a}}dx}{a}\right )}{4 a^2}-\frac {\tan (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 \left (\frac {2 a \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {2 a \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx-3 a^2 \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{a}\right )}{4 a^2}-\frac {\tan (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3128

\(\displaystyle \frac {3 \left (\frac {2 a \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {\frac {6 a^2 \int \frac {1}{2 a-\frac {a^2 \sin ^2(c+d x)}{\cos (c+d x) a+a}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}+2 a \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{a}\right )}{4 a^2}-\frac {\tan (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {3 \left (\frac {2 a \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {2 a \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx-\frac {3 \sqrt {2} a^{3/2} \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{d}}{a}\right )}{4 a^2}-\frac {\tan (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3252

\(\displaystyle \frac {3 \left (\frac {2 a \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {-\frac {4 a^2 \int \frac {1}{a-\frac {a^2 \sin ^2(c+d x)}{\cos (c+d x) a+a}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}-\frac {3 \sqrt {2} a^{3/2} \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{d}}{a}\right )}{4 a^2}-\frac {\tan (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {3 \left (\frac {2 a \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {\frac {4 a^{3/2} \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}-\frac {3 \sqrt {2} a^{3/2} \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{d}}{a}\right )}{4 a^2}-\frac {\tan (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

input
Int[Sec[c + d*x]^2/(a + a*Cos[c + d*x])^(3/2),x]
 
output
-1/2*Tan[c + d*x]/(d*(a + a*Cos[c + d*x])^(3/2)) + (3*(-(((4*a^(3/2)*ArcTa 
nh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d - (3*Sqrt[2]*a^(3/2 
)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/d)/a 
) + (2*a*Tan[c + d*x])/(d*Sqrt[a + a*Cos[c + d*x]])))/(4*a^2)
 

3.2.37.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3128
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[-2/d 
Subst[Int[1/(2*a - x^2), x], x, b*(Cos[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 3245
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^ 
m*((c + d*Sin[e + f*x])^(n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/( 
a*(2*m + 1)*(b*c - a*d))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + 
f*x])^n*Simp[b*c*(m + 1) - a*d*(2*m + n + 2) + b*d*(m + n + 2)*Sin[e + f*x] 
, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ 
[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] &&  !GtQ[n, 0] && (Intege 
rsQ[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))
 

rule 3252
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)]), x_Symbol] :> Simp[-2*(b/f)   Subst[Int[1/(b*c + a*d - d*x^2), 
x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, 
 e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3463
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n 
+ 1)/(f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(b*(n + 1)*(c^2 - d^2))   Int[(a 
 + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*(a*d*m + b*c*(n + 
1)) - B*(a*c*m + b*d*(n + 1)) + b*(B*c - A*d)*(m + n + 2)*Sin[e + f*x], x], 
 x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && Eq 
Q[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1] && (IntegerQ[n] || EqQ[m 
 + 1/2, 0])
 

rule 3464
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + 
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp[(A 
*b - a*B)/(b*c - a*d)   Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Simp[(B*c 
- A*d)/(b*c - a*d)   Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x], 
 x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - 
 b^2, 0] && NeQ[c^2 - d^2, 0]
 
3.2.37.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(566\) vs. \(2(119)=238\).

Time = 1.68 (sec) , antiderivative size = 567, normalized size of antiderivative = 3.94

method result size
default \(\frac {\sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (18 \sqrt {2}\, \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) a \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-12 \ln \left (\frac {4 \sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right ) \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -12 \ln \left (-\frac {4 \left (\sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right ) \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -9 \sqrt {2}\, \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {2}\, \sqrt {a}+6 \ln \left (\frac {4 \sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right ) \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +6 \ln \left (-\frac {4 \left (\sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right ) \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -\sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\right )}{2 a^{\frac {5}{2}} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\right ) \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}\) \(567\)

input
int(sec(d*x+c)^2/(a+cos(d*x+c)*a)^(3/2),x,method=_RETURNVERBOSE)
 
output
1/2*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(18*2^(1/2)*ln(2*(2*a^(1/2)*(a*sin(1/2* 
d*x+1/2*c)^2)^(1/2)+2*a)/cos(1/2*d*x+1/2*c))*a*cos(1/2*d*x+1/2*c)^4-12*ln( 
4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a* 
sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))*cos(1/2*d*x+1/2*c)^4*a-12*ln(-4/ 
(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*si 
n(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*cos(1/2*d*x+1/2*c)^4*a-9*2^(1/2)*l 
n(2*(2*a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+2*a)/cos(1/2*d*x+1/2*c))*a*c 
os(1/2*d*x+1/2*c)^2+6*cos(1/2*d*x+1/2*c)^2*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)* 
2^(1/2)*a^(1/2)+6*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d 
*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))*cos(1/2*d*x 
+1/2*c)^2*a+6*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+ 
1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*cos(1/2*d*x+1/ 
2*c)^2*a-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2))/a^(5/2)/cos(1/2*d 
*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)-2^(1/2))/(2*cos(1/2*d*x+1/2*c)+2^(1/2))/si 
n(1/2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d
 
3.2.37.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 286 vs. \(2 (119) = 238\).

Time = 0.31 (sec) , antiderivative size = 286, normalized size of antiderivative = 1.99 \[ \int \frac {\sec ^2(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\frac {9 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{3} + 2 \, \cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 6 \, {\left (\cos \left (d x + c\right )^{3} + 2 \, \cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} + 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \, \sqrt {a \cos \left (d x + c\right ) + a} {\left (3 \, \cos \left (d x + c\right ) + 2\right )} \sin \left (d x + c\right )}{8 \, {\left (a^{2} d \cos \left (d x + c\right )^{3} + 2 \, a^{2} d \cos \left (d x + c\right )^{2} + a^{2} d \cos \left (d x + c\right )\right )}} \]

input
integrate(sec(d*x+c)^2/(a+a*cos(d*x+c))^(3/2),x, algorithm="fricas")
 
output
1/8*(9*sqrt(2)*(cos(d*x + c)^3 + 2*cos(d*x + c)^2 + cos(d*x + c))*sqrt(a)* 
log(-(a*cos(d*x + c)^2 - 2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(a)*sin(d* 
x + c) - 2*a*cos(d*x + c) - 3*a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) + 
6*(cos(d*x + c)^3 + 2*cos(d*x + c)^2 + cos(d*x + c))*sqrt(a)*log((a*cos(d* 
x + c)^3 - 7*a*cos(d*x + c)^2 + 4*sqrt(a*cos(d*x + c) + a)*sqrt(a)*(cos(d* 
x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 4*sqr 
t(a*cos(d*x + c) + a)*(3*cos(d*x + c) + 2)*sin(d*x + c))/(a^2*d*cos(d*x + 
c)^3 + 2*a^2*d*cos(d*x + c)^2 + a^2*d*cos(d*x + c))
 
3.2.37.6 Sympy [F]

\[ \int \frac {\sec ^2(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\int \frac {\sec ^{2}{\left (c + d x \right )}}{\left (a \left (\cos {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \]

input
integrate(sec(d*x+c)**2/(a+a*cos(d*x+c))**(3/2),x)
 
output
Integral(sec(c + d*x)**2/(a*(cos(c + d*x) + 1))**(3/2), x)
 
3.2.37.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 139280 vs. \(2 (119) = 238\).

Time = 5.93 (sec) , antiderivative size = 139280, normalized size of antiderivative = 967.22 \[ \int \frac {\sec ^2(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\text {Too large to display} \]

input
integrate(sec(d*x+c)^2/(a+a*cos(d*x+c))^(3/2),x, algorithm="maxima")
 
output
-1/4*(48*(sqrt(2)*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 
+ 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - s 
qrt(2)*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2) 
*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + sqrt(2)*log( 
2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d* 
x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - sqrt(2)*log(2*cos(1/2*d 
*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) 
- 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 3*log(cos(1/2*d*x + 1/2*c)^2 + sin 
(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) + 3*log(cos(1/2*d*x + 1/ 
2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(3*d*x + 
 3*c)^4 + 432*(sqrt(2)*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2* 
c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2 
) - sqrt(2)*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sq 
rt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + sqrt(2) 
*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1 
/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - sqrt(2)*log(2*cos( 
1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/ 
2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 3*log(cos(1/2*d*x + 1/2*c)^2 
+ sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) + 3*log(cos(1/2*d*x 
 + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos...
 
3.2.37.8 Giac [F(-2)]

Exception generated. \[ \int \frac {\sec ^2(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\text {Exception raised: TypeError} \]

input
integrate(sec(d*x+c)^2/(a+a*cos(d*x+c))^(3/2),x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 
3.2.37.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^2(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\int \frac {1}{{\cos \left (c+d\,x\right )}^2\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

input
int(1/(cos(c + d*x)^2*(a + a*cos(c + d*x))^(3/2)),x)
 
output
int(1/(cos(c + d*x)^2*(a + a*cos(c + d*x))^(3/2)), x)